【Udemy中英字幕】Python for Time Series Data Analysis
最近更新 2023年02月17日
资源编号 41930

【Udemy中英字幕】Python for Time Series Data Analysis

2023-02-17 Udemy 0 221
郑重承诺丨视频 中英文字幕 配套课件
增值服务:免费提供代找课服务:
¥ 49.9 金币
VIP折扣
    折扣详情
  • 体验会员

    免费

  • 包月会员

    免费

  • 包年会员

    免费

  • 永久会员

    免费

开通VIP尊享优惠特权
立即下载 升级会员
微信扫码咨询 微信扫码咨询
进入TA的商铺 联系官方客服
信息属性
详情介绍

用于时间序列数据分析的 Python

了解如何使用 Python、Pandas、Numpy 和 Statsmodels 进行时间序列预测和分析!

讲师:Jose Portilla

双语IT资源独家Udemy付费课程独家中英文字幕配套资料齐全!

不到1/10的价格,即可享受同样的高品质课程,且可以完全拥有,随时随地都可以任意观看和分享。

你会学到什么

  • 用于数据操作的 Pandas
  • 用于数值处理的 NumPy 和 Python
  • 用于数据可视化的 Pandas
  • 如何使用 Pandas 处理时间序列数据
  • 使用 Statsmodels 分析时间序列数据
  • 使用 Facebook 的 Prophet Library 进行预测
  • 了解用于预测的高级 ARIMA 模型

本课程包括:

  • 15.5 小时点播视频
  • 3 篇文章
  • 4 个可下载资源
  • 在手机和电视上访问

课程内容

11 个部分• 95 个讲座• 15 小时 21 分钟

要求

  • 一般 Python 技能(函数知识)

描述

欢迎来到学习如何使用 Python 编程语言进行时间序列分析的最佳在线资源!

本课程将教您使用 Python 预测时间序列数据以预测新的未来数据点所需了解的一切。

我们将从基础知识开始,教您如何使用 Python 的 NumPy 和 Pandas 库来处理和操作数据。然后,我们将通过学习 Pandas 库的可视化以及如何使用 Pandas 和 Python 处理时间戳数据来更深入地研究 Pandas。

然后我们将开始了解 statsmodels 库及其强大的内置时间序列分析工具。包括学习误差-趋势-季节性分解和基本的 Holt-Winters 方法。

之后我们将进入课程的核心,涵盖一般预测模型。我们将讨论创建自相关和部分自相关图表,并将它们与强大的基于 ARIMA 的模型结合使用,包括季节性 ARIMA 模型和 SARIMAX 以包含外生数据点。

之后,我们将学习使用深度学习预测未来数据点的递归神经网络的最先进深度学习技术。

本课程甚至涵盖了 Facebook 的 Prophet 库,这是一个简单易用但功能强大的 Python 库,开发用于使用时间序列数据预测未来。

你还在等什么!了解如何使用时间序列数据并预测未来!

我们课程内见!

本课程适合谁:

  • 有兴趣学习如何预测时间序列数据的 Python 开发人员
请注意:
如果你有能力,请务必支持课程的原创作者,这是他们应得的报酬!
本站收取的费用,仅用来维持网站正常运行的必要支出,从本站下载任何内容,说明你已经知晓并同意此条款。

相关文章

发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务